Factors Affecting the Rated Capacity of Mobile Cranes

Many conditions can affect the strength of stability of a mobile crane. In addition to improper inspections and maintenance, these conditions include machine configuration, unbalanced rope reeving, improper use of outriggers, soft footing, an unlevel crane, side loading, increasing load radius, shock loading, high duty cycle, and high wind speeds.

MACHINE CONFIGURATION

Load chart ratings may only be applied if the machine is rigged according to the manufacturer’s specifications. Some of the considerations include:

- Is the jib erected or stowed?
- What type of jib is used?
- What is the jib offset angle?
- Are the outriggers extended properly?
- Are the tires properly inflated?
- What type of boom is used? What is the boom length? Where are the boom insert locations?
- What counterweights are used? Are they configured according to the manufacturer’s specifications?
- What is the wire rope size and grade?
- What is the configuration of the hoist reeving?

The important point is to know the configuration of the crane, ensure the configuration is correct, and use the appropriate load chart.

UNBALANCED ROPE REEVENING

Unbalanced rope reeving occurs whenever the main hoist line is reeved to one side of the boom tip. This condition causes the boom to twist, which subsequently reduces the rated capacity of the crane. Full chart ratings may only be applied when the boom tip is symmetrically rigged. On single line reeving, when the hoist line runs on the center sheave or on the sheave beside the centerline of the boom, the boom twist is minimized. On multi-part reeved systems, if the parts of line are evenly distributed on either side of the boom centerline, the boom twist will be minimized. Be sure to check the manufacturer’s reeving diagrams to ensure proper reeving.

IMPROPER USE OF OUTRIGGERS

If lifting on outriggers, the load chart rating applies only when all of the outrigger beams are fully extended and all tires are clear of the ground. If these two conditions are not met, then the “on rubber” capacity charts should be used. If lifting on rubber, the load chart ratings apply only when tires are in accordance to the manufacturer’s specifications and in good condition, and the specified tire pressure is maintained. Some of the newer mobile cranes have load charts for mid-extended outrigger beams. For
such cranes, the outriggers should still be extended to the proper point and all of the tires must be clear of the ground.

SOFT FOOTING
The ground condition must have enough stability and bearing capacity to support all loads put on it by the crane. Extreme caution shall be used when performing lift operations beside buildings, especially if newly constructed with uncompacted backfill, along trenches, or in areas where water mains, sewer pipes or steam lines are buried.

When a crane sits on its bearing surface, it exerts varying pressures depending on the operating conditions and quadrants. The lowest bearing pressure is the total weight of the machine distributed over the entire area of both tracks or all outrigger supports. Lifting a load over the corner produces the maximum ground bearing pressure, which makes it the most dangerous position. The ground pressure of a truck crane may be higher than that of a crawler crane due to the smaller load bearing surface area of the pads. Pads used for outriggers should be stable and rigid, be three times larger in area than the outrigger float and be fully supported.

UNLEVEL CRANES
The load chart ratings are based on the crane being perfectly level in all directions. A crane that is not level causes side loading of the boom, thus reducing the rated capacity. A crane that is 3 degrees out of level may reduce the rated capacity by as much as 50 percent. This applies to “on crawlers” and “on outriggers” as well as “on rubber” lifting operations.

The target level in the crane cab should be used for initial leveling; however, for critical lifts, a carpenter’s level should be used. After initial leveling, place the carpenter’s level on the carrier deck in one direction, then rotate the boom 90° and recheck. The levelness can be double-checked by raising the boom and lowering the load line. The line should lie in the center of the boom in all positions (i.e., end, side and corner). If making a series of lifts, the levelness should be periodically checked.

SIDE LOADING
The load chart ratings apply for only freely suspended loads and when the load is picked up directly under the boom tip. If the load is to either side of the boom tip, side loading occurs which affects the crane’s capacity. Side loading is one of the most common causes of boom failure which usually occurs without warning. Side loading can occur when a load is dragged or pulled sideways, when the load starts swinging rapidly, when the crane is not level, and when exposed to high wind speeds. Tilt up operations can also cause side loading of the boom.

INCREASING LOAD RADIUS
The load radius may increase during a lift if the hoist line is not vertical at all times. Increasing load radius may be caused by lifting a load that is outside or inside of the boom tip radius. For such lifts, the load will start to swing in and out after the load clears the ground, which increases the load radius, thus reducing the rated capacity of the crane. Lifting “on rubber” can also cause the load radius to increase due to deflections in the boom, tire and carrier.

SHOCK LOADING
Load charts do not allow for impact loads. Shock loads can be caused by rapid acceleration, sudden stopping, sudden load release and sudden load snatching. For instance, the shock loading increases by approximately 35 percent if the hoist line is traveling at a speed of
400 feet per minute and stops with a stopping distance of only two feet. Whereas, the shock loading only increases by approximately 0.5 percent if the hoist line is traveling at a speed of 100 feet per minute with a stopping distance of 10 feet. In addition to sudden deceleration and the other conditions mentioned above, pick and carry operations also produce impact loads to the machine.

HIGH DUTY CYCLE

Load chart ratings may not apply when cranes are used in high-speed production operations. The manufacturer will either specify in the load chart that the rated capacities must be reduced by a percentage for high duty cycle operations or will supply a separate load chart for such operations. The capacity reductions are recommended since the speed of these operations produces side loading as well as higher temperatures in critical components such as brakes, clutches, pumps and motors.

HIGH WIND SPEEDS

High wind speeds affect the capacity of a mobile crane by increasing the side loading on the boom and the load radius, and decreasing the tipping (both forward and backward) capacity. In addition, performing lifts in windy conditions makes it more difficult to handle the load. Hoisting activities should be restricted or stopped completely (and the boom properly secured) in windy conditions.

TRAINING

All personnel involved with lifting operations should be trained to recognize the above capacity-reducing factors. Also, only trained and experienced operators should be permitted to operate mobile cranes.

The information contained herein is intended for informational purposes only and does not constitute legal advice. For legal advice, seek the services of a competent attorney. Any descriptions of insurance provisions are general overviews only.